K. M. Dasyra, L. C. Ho, H. Netzer, F. Combes, B. Trakhtenbrot, E. Sturm, L. Armus, D. Elbaz
We queried the Spitzer archive for high-resolution observations with the
Infrared Spectrograph of optically selected active galactic nuclei (AGN) for
the purpose of identifying sources with resolved fine-structure lines that
would enable studies of the narrow-line region (NLR) at mid-infrared
wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory
spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used
the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with
each other, to probe gas photoionized by the AGN. We found that the widths of
the lines are, on average, increasing with the ionization potential of the
species that emit them. No correlation of the line width with the critical
density of the corresponding transition was found. The velocity dispersion of
the gas, sigma, is systematically higher than that of the stars, sigma_*, in
the AGN host galaxy, and it scales with the mass of the central black hole,
M_BH. Further correlations between the line widths and luminosities L, and
between L and M_BH, are suggestive of a three dimensional plane connecting
log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be
understood within the context of gas motions that are driven by AGN feedback
mechanisms, or virialized gas motions with a power-law dependence of the NLR
radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN
from this plane are consistent with those obtained from the M_BH-sigma_*
relation.
View original:
http://arxiv.org/abs/1107.3397
No comments:
Post a Comment