Wednesday, November 16, 2011

1111.3577 (Maxim Yu. Khlopov et al.)

Towards Nuclear Physics of OHe Dark Matter    [PDF]

Maxim Yu. Khlopov, Andrey G. Mayorov, Evgeny Yu. Soldatov
The nonbaryonic dark matter of the Universe can consist of new stable charged particles, bound in heavy "atoms" by ordinary Coulomb interaction. If stable particles $O^{--}$ with charge -2 are in excess over their antiparticles (with charge +2), the primordial helium, formed in Big Bang Nucleosynthesis, captures all $O^{--}$ in neutral "atoms" of O-helium (OHe). Interaction with nuclei plays crucial role in the cosmological evolution of OHe and in the effects of these dark atoms as nuclear interacting dark matter. Slowed down in terrestrial matter OHe atoms cause negligible effects of nuclear recoil in underground detectors, but can experience radiative capture by nuclei. Local concentration of OHe in the matter of detectors is rapidly adjusted to the incoming flux of cosmic OHe and possess annual modulation due to Earth's orbital motion around the Sun. The potential of OHe-nucleus interaction is determined by polarization of OHe by the Coulomb and nuclear force of the approaching nucleus. Stark-like effect by the Coulomb force of nucleus makes this potential attractive at larger distances, while change of polarization by the effect of nuclear force gives rise to a potential barrier, preventing merging of nucleus with helium shell of OHe atom. The existence of the corresponding shallow well beyond the nucleus can provide the conditions, at which nuclei in the matter of DAMA/NaI and DAMA/LIBRA detectors have a few keV binding energy with OHe, corresponding to a level in this well. Annual modulation of the radiative capture rate to this level can reproduce DAMA results. The OHe hypothesis can qualitatively explain the controversy in the results of direct dark matter searches by specifics of OHe nuclear interaction with the matter of underground detectors.
View original: http://arxiv.org/abs/1111.3577

No comments:

Post a Comment