Duncan Farrah, Tanya Urrutia, Mark Lacy, Andreas Efstathiou, Jose Afonso, Kristen Coppin, Patrick B. Hall, Carol Lonsdale, Tom Jarrett, Carrie Bridge, Colin Borys, Sara Petty
We present optical to far-infrared photometry of 31 reddened QSOs that show
evidence for radiatively driven outflows originating from AGN in their
rest-frame UV spectra. We use these data to study the relationships between the
AGN-driven outflows, and the AGN and starburst infrared luminosities. We find
that FeLoBAL QSOs are invariably IR-luminous, with IR luminosities exceeding
10^{12} Solar luminosities in all cases. The AGN supplies 76% of the total IR
emission, on average, but with a range from 20% to 100%. We find no evidence
that the absolute luminosity of obscured star formation is affected by the
AGN-driven outflows. Conversely, we find an anticorrelation between the
strength of AGN-driven outflows, as measured from the range of outflow
velocities over which absorption exceeds a minimal threshold, and the
contribution from star formation to the total IR luminosity, with a much higher
chance of seeing a starburst contribution in excess of 25% in systems with weak
outflows than in systems with strong outflows. Moreover, we find no convincing
evidence that this effect is driven by the IR luminosity of the AGN. We
conclude that radiatively driven outflows from AGN can have a dramatic,
negative impact on luminous star formation in their host galaxies. We find that
such outflows act to curtail star formation such that star formation
contributes less than ~25% of the total IR luminosity. We also propose that the
degree to which termination of star formation takes place is not deducible from
the IR luminosity of the AGN.
View original:
http://arxiv.org/abs/1112.1092
No comments:
Post a Comment