1112.4169 (Ben Kain et al.)
Ben Kain, Hong Y. Ling
We consider the growth of cosmological perturbations to the energy density of
dark matter during matter domination when dark matter is a scalar field that
has undergone Bose-Einstein condensation. We study these inhomogeneities within
the framework of both Newtonian gravity, where the calculation and results are
more transparent, and General Relativity. The direction we take is to derive
analytical expressions, which can be obtained in the small pressure limit.
Throughout we compare our results to those of the standard cosmology, where
dark matter is assumed pressureless, using our analytical expressions to
showcase precise differences. We find, compared to the standard cosmology, that
Bose-Einstein condensate dark matter leads to a scale factor, gravitational
potential and density contrast that increase at faster rates.
View original:
http://arxiv.org/abs/1112.4169
No comments:
Post a Comment