Tomonori Totani, Tsutomu T. Takeuchi, Masahiro Nagashima, Masakazu A. R. Kobayashi, Ryu Makiya
We have studied the properties of more than 1600 low-redshift galaxies by
utilizing high-quality infrared flux measurements of the AKARI All-Sky Survey
and physical quantities based on optical and 21-cm observations. Our goal is to
understand the physics determining the infrared spectral energy distribution
(SED). The ratio of the total infrared luminosity L_TIR, to the star-formation
rate (SFR) is tightly correlated by a power-law to specific SFR (SSFR), and
L_TIR is a good SFR indicator only for galaxies with the largest SSFR. We
discovered a tight linear correlation for normal galaxies between the radiation
field strength of dust heating, estimated by infrared SED fits (U_h), and that
of galactic-scale infrared emission (U_TIR ~ L_TIR/R^2), where R is the optical
size of a galaxy. The dispersion of U_h along this relation is 0.3 dex,
corresponding to 13% dispersion in the dust temperature. This scaling and the
U_h/U_TIR ratio can be explained physically by a thin layer of heating sources
embedded in a thicker, optically-thick dust screen. The data also indicate that
the heated fraction of the total dust mass is anti-correlated to the dust
column density, supporting this interpretation. In the large U_TIR limit, the
data of circumnuclear starbursts indicate the existence of an upper limit on
U_h, corresponding to the maximum SFR per gas mass of ~ 10 Gyr^{-1}. We find
that the number of galaxies sharply drops when they become optically thin
against dust-heating radiation, suggesting that a feedback process to galaxy
formation (likely by the photoelectric heating) is working when dust-heating
radiation is not self-shielded on a galactic scale. Implications are discussed
for the M_HI-size relation, the Kennicutt-Schmidt relation, and galaxy
formation in the cosmological context.
View original:
http://arxiv.org/abs/1103.5402
No comments:
Post a Comment