A. Maurer, M. Raue, T. Kneiske, D. Elsässer, P. H. Hauschildt, D. Horns
The existence of predominantly cold non-baryonic dark matter is unambiguously
demonstrated by several observations (e.g., structure formation, big bang
nucleosynthesis, gravitational lensing, and rotational curves of spiral
galaxies). A candidate well motivated by particle physics is a weakly
interacting massive particle (WIMP). Self-annihilating WIMPs would affect the
stellar evolution especially in the early universe. Stars powered by
self-annihilating WIMP dark matter should possess different properties compared
with standard stars. While a direct detection of such dark matter powered stars
seems very challenging, their cumulative emission might leave an imprint in the
diffuse metagalactic radiation fields, in particular in the mid-infrared part
of the electromagnetic spectrum. In this work the possible contributions of
dark matter powered stars (dark stars; DSs) to the extragalactic background
light (EBL) are calculated. It is shown that existing data and limits of the
EBL intensity can already be used to rule out some DS parameter sets.
View original:
http://arxiv.org/abs/1201.1305
No comments:
Post a Comment