Tuesday, January 10, 2012

1201.1508 (Lam Hui et al.)

An observational test of the Vainshtein mechanism    [PDF]

Lam Hui, Alberto Nicolis
Modified gravity theories capable of genuine self-acceleration typically invoke a galileon scalar which mediates a long range force, but is screened by the Vainshtein mechanism on small scales. In such theories, non-relativistic stars carry the full scalar charge (proportional to their mass), while black holes carry none. Thus, for a galaxy free-falling in some external gravitational field, its central massive black hole is expected to lag behind the stars. To look for this effect, and to distinguish it from other astrophysical effects, one can correlate the gravitational pull from the surrounding structure with the offset between the stellar center and the black hole. The expected offset depends on the central density of the galaxy, and ranges up to ~0.1 kpc for small galaxies. The observed offset in M87 cannot be explained by this effect unless the scalar force is significantly stronger than gravity. We also discuss the systematic offset of compact objects from the galactic plane as another possible signature.
View original: http://arxiv.org/abs/1201.1508

No comments:

Post a Comment