Wednesday, January 11, 2012

1201.1904 (Laura Blecha et al.)

Double-peaked Narrow-Line Signatures of Dual Supermassive Black Holes in Galaxy Merger Simulations    [PDF]

Laura Blecha, Abraham Loeb, Ramesh Narayan
We present a first attempt to model the narrow-line (NL) region of active galactic nuclei (AGN) in hydrodynamic simulations of galaxy mergers, using a novel physical prescription. This model is used to determine the origin of double-peaked NL (dNL) AGN in merging galaxies and their connection to supermassive black hole (SMBH) pairs, motivated by recent observations of such objects. We find that dNL AGN induced by the relative motion of SMBH pairs are a generic but short-lived feature of gaseous major mergers. dNL AGN are most likely to be observed in late-stage mergers, during the kpc-scale phase of SMBH inspiral or soon after the SMBH merger. However, even within the kpc-scale phase, only a minority of dNL AGN are directly induced by SMBH motion; their lifetimes are typically a few Myr. Most double peaks arise from gas kinematics near the SMBH, although prior to the SMBH merger up to 80% of all dNL profiles may be influenced by SMBH motion via altered peak ratios or velocity offsets. The total lifetimes of dNL AGN depend strongly on viewing angle and on properties of the merging galaxies. Also, in a typical merger, at least 10-40% of the double peaks induced by SMBH motion have small projected separations, 0.1-1 kpc, such that dual peaks of stellar surface brightness are not easily resolved. Diffuse tidal features can indicate late-stage galaxy mergers, although they do not distinguish SMBH pairs from merged SMBHs. We show that dNL profiles with peak velocity splittings > 500 km s^-1 or with measurable overall velocity shifts are often associated with SMBH pairs. Our results support the notion that selection of dNL AGN is a promising method for identifying dual SMBH candidates, but demonstrate the critical importance of high-resolution, multi-wavelength follow-up observations, and the use of multiple lines of evidence, for confirming the dual nature of candidate SMBH pairs. (Abridged)
View original: http://arxiv.org/abs/1201.1904

No comments:

Post a Comment