Cullan Howlett, Antony Lewis, Alex Hall, Anthony Challinor
Cosmological parameter constraints from the CMB power spectra alone suffer
several well-known degeneracies. These degeneracies can be broken by numerical
artefacts and also a variety of physical effects that become quantitatively
important with high-accuracy data e.g. from the Planck satellite. We study
degeneracies in models with flat and non-flat spatial sections, non-trivial
dark energy and massive neutrinos, and investigate the importance of various
physical degeneracy-breaking effects. We test the CAMB power spectrum code for
numerical accuracy, and demonstrate that the numerical calculations are
accurate enough for degeneracies to be broken mainly by true physical effects
(the integrated Sachs-Wolfe effect, CMB lensing and geometrical and other
effects through recombination) rather than numerical artefacts. We quantify the
impact of CMB lensing on the power spectra, which inevitably provides
degeneracy-breaking information even without using information in the
non-Gaussianity. Finally we check the numerical accuracy of sample-based
parameter constraints using CAMB and CosmoMC. In an appendix we document recent
changes to CAMB's numerical treatment of massive neutrino perturbations, which
are tested along with other recent improvements by our degeneracy exploration
results.
View original:
http://arxiv.org/abs/1201.3654
No comments:
Post a Comment