Douglas F. Watson, Andreas A. Berlind, Cameron K. McBride, David W. Hogg, Tao Jiang
We investigate the radial distribution of galaxies within their host dark
matter halos by modeling their small-scale clustering, as measured in the Sloan
Digital Sky Survey. Specifically, we model the Jiang et al. (2011) measurements
of the galaxy two-point correlation function down to very small projected
separations (10 < r < 400 kpc/h), in a wide range of luminosity threshold
samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation
distribution (HOD) framework with free parameters that specify both the number
and spatial distribution of galaxies within their host dark matter halos. We
assume that the first galaxy in each halo lives at the halo center and that
additional satellite galaxies follow a radial density profile similar to the
dark matter Navarro-Frenk-White (NFW) profile, except that the concentration
and inner slope are allowed to vary. We find that in low luminosity samples,
satellite galaxies have radial profiles that are consistent with NFW. M_r < -20
and brighter satellite galaxies have radial profiles with significantly steeper
inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to
-2.1, as opposed to -1 for NFW). We define a useful metric of concentration,
M_(1/10), which is the fraction of satellite galaxies (or mass) that are
enclosed within one tenth of the virial radius of a halo. We find that M_(1/10)
for low luminosity satellite galaxies agrees with NFW, whereas for luminous
galaxies it is 2.5-4 times higher, demonstrating that these galaxies are
substantially more centrally concentrated within their dark matter halos than
the dark matter itself. Our results therefore suggest that the processes that
govern the spatial distribution of galaxies, once they have merged into larger
halos, must be luminosity dependent, such that luminous galaxies become poor
tracers of the underlying dark matter.
View original:
http://arxiv.org/abs/1108.1195
No comments:
Post a Comment