1201.6490 (R. Aurich et al.)
R. Aurich, S. Lustig
The CMB anisotropies in spherical 3-spaces with a non-trivial topology are
analysed with a focus on lens and prism shaped fundamental cells. The
conjecture is tested that well proportioned spaces lead to a suppression of
large-scale anisotropies according to the observed cosmic microwave background
(CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly
proportioned. However, there are inhomogeneous lens spaces whose shape of the
Voronoi domain depends on the position of the observer within the manifold.
Such manifolds possess no fixed measure of well-proportioned and allow a
predestined test of the well-proportioned conjecture. Topologies having the
same Voronoi domain are shown to possess distinct CMB statistics which thus
provide a counter-example to the well-proportioned conjecture. The CMB
properties are analysed in terms of cyclic subgroups Z_p, and new point of view
for the superior behaviour of the Poincar\'e dodecahedron is found.
View original:
http://arxiv.org/abs/1201.6490
No comments:
Post a Comment