L. Colina, M. Pereira-Santaella, A. Alonso-Herrero, A. G. Bedregal, S. Arribas
Spatially resolved near-IR and X-ray imaging of the central region of the
Luminous Infrared Galaxy NGC 5135 is presented. The kinematical signatures of
strong outflows are detected in the [FeII]1.64 \mu m emission line in a compact
region at 0.9 kpc from the nucleus. The derived mechanical energy release is
consistent with a supernova rate of 0.05-0.1 yr$^{-1}$. The apex of the
outflowing gas spatially coincides with the strongest [FeII] emission peak and
with the dominant component of the extranuclear hard X-ray emission. All these
features provide evidence for a plausible direct physical link between
supernova-driven outflows and the hard X-ray emitting gas in a LIRG. This
result is consistent with model predictions of starbursts concentrated in small
volumes and with high thermalization efficiencies. A single high-mass X-ray
binary (HMXB) as the major source of the hard X-ray emission although not
favoured, cannot be ruled out. Outside the AGN, the hard X-ray emission in NGC
5135 appears to be dominated by the hot ISM produced by supernova explosions in
a compact star-forming region, and not by the emission due to HMXB. If this
scenario is common to U/LIRGs, the hard X-rays would only trace the most
compact (< 100 pc) regions with high supernova and star formation densities,
therefore a lower limit to their integrated star formation. The SFR derived in
NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower
than the values obtained from the 24 \mu m and soft X-ray luminosities,
respectively.
View original:
http://arxiv.org/abs/1202.2254
No comments:
Post a Comment