Kevin C. Schlaufman, Constance M. Rockosi, Young Sun Lee, Timothy C. Beers, Carlos Allende Prieto, Valery Rashkov, Piero Madau, Dmitry Bizyaev
We find that the relative contribution of satellite galaxies accreted at high
redshift to the stellar population of the Milky Way's smooth halo increases
with distance, becoming observable relative to the classical smooth halo about
15 kpc from the Galactic center. In particular, we determine
line-of-sight-averaged [Fe/H] and [alpha/Fe] in the metal-poor main-sequence
turnoff (MPMSTO) population along every Sloan Extension for Galactic
Understanding and Exploration (SEGUE) spectroscopic line of sight. Restricting
our sample to those lines of sight along which we do not detect elements of
cold halo substructure (ECHOS), we compile the largest spectroscopic sample of
stars in the smooth component of the halo ever observed in situ beyond 10 kpc.
We find significant spatial autocorrelation in [Fe/H] in the MPMSTO population
in the distant half of our sample beyond about 15 kpc from the Galactic center.
Inside of 15 kpc however, we find no significant spatial autocorrelation in
[Fe/H]. At the same time, we perform SEGUE-like observations of N-body
simulations of Milky Way analog formation. While we find that halos formed
entirely by accreted satellite galaxies provide a poor match to our
observations of the halo within 15 kpc of the Galactic center, we do observe
spatial autocorrelation in [Fe/H] in the simulations at larger distances. This
observation is an example of statistical chemical tagging and indicates that
spatial autocorrelation in metallicity is a generic feature of stellar halos
formed from accreted satellite galaxies.
View original:
http://arxiv.org/abs/1202.2360
No comments:
Post a Comment