Mohan Ganeshalingam, Weidong Li, Alexei V. Filippenko, Jeffrey M. Silverman, Ryan Chornock, Ryan J. Foley, Thomas Matheson, Robert P. Kirshner, Peter Milne, Mike Calkins, Ken J. Shen
SN 2002es is a peculiar subluminous Type Ia supernova (SN Ia) with a
combination of observed characteristics never before seen in a SN Ia. At
maximum light, SN 2002es shares spectroscopic properties with the underluminous
SN 1991bg subclass of SNe Ia, but with substantially lower expansion velocities
(~6000 km/s) more typical of the SN 2002cx subclass. Photometrically, SN 2002es
differs from both SN 1991bg-like and SN 2002cx-like supernovae. Although at
maximum light it is subluminous (M_B=-17.78 mag), SN 2002es has a relatively
broad light curve (Dm15(B)=1.28 +/- 0.04 mag), making it a significant outlier
in the light-curve width vs. luminosity relationship. We estimate a 56Ni mass
of 0.17 +/- 0.05 M_sun synthesized in the explosion, relatively low for a SN
Ia. One month after maximum light, we find an unexpected plummet in the
bolometric luminosity. The late-time decay of the light curves is inconsistent
with our estimated 56Ni mass, indicating that either the light curve was not
completely powered by 56Ni decay or the ejecta became optically thin to
gamma-rays within a month after maximum light. The host galaxy is classified as
an S0 galaxy with little to no star formation, indicating the progenitor of SN
2002es is likely from an old stellar population. We also present a less
extensive dataset for SN 1999bh, an object which shares similar observed
properties. Both objects were found as part of the Lick Observatory Supernova
Search, allowing us to estimate that these objects should account for ~2.5% of
SNe Ia within a fixed volume. We find that current theoretical models are
unable to explain the observed of characteristics of SN 2002es.
View original:
http://arxiv.org/abs/1202.3140
No comments:
Post a Comment