Yuka K. Uchimoto, Toru Yamada, Masaru Kajisawa, Mariko Kubo, Takashi Ichikawa, Yuichi Matsuda, Masayuki Akiyama, Tomoki Hayashino, Masahiro Konishi, Tetsuo Nishimura, Koji Omata, Ryuji Suzuki, Ichi Tanaka, Chihiro Tokoku, Tomohiro Yoshikawa
We present the results of wide-field deep JHK imaging of the SSA22 field using MOIRCS instrument equipped with Subaru telescope. The observed field is 112 arcmin^2 in area, which covers the z=3.1 protocluster characterized by the overdensities of Ly Alpha emitters (LAEs) and Ly Alpha Blobs (LABs). The 5 sigma limiting magnitude is K_{AB} = 24.3. We extract the potential protocluster members from the K-selected sample by using the multi-band photometric-redshift selection as well as the simple color cut for distant red galaxies (DRGs; J-K_{AB}>1.4). The surface number density of DRGs in our observed fields shows clear excess compared with those in the blank fields, and the location of the densest area whose projected overdensity is twice the average coincides with the large-scale density peak of LAEs. We also found that K-band counterparts with z_{phot} = 3.1 are detected for 75% (15/20) of the LABs within their Ly Alpha halo, and the 40 % (8/20) of LABs have multiple components, which gives a direct evidence of the hierarchical multiple merging in galaxy formation. The stellar mass ofLABs correlates with their luminosity, isophotal area, and the Ly Alpha velocity widths, implying that the physical scale and the dynamical motion of Ly Alpha emission are closely related to their previous star-formation activities. Highly dust-obscured galaxies such as hyper extremely red objects (HEROs; J-K_{AB}>2.1) and plausible K-band counterparts of submillimeter sources are also populated in the high density region.
View original:
http://arxiv.org/abs/1203.0814
No comments:
Post a Comment