Tuesday, March 27, 2012

1203.5701 (Keith A. Olive et al.)

Higher D or Li: Probes of Physics beyond the Standard Model    [PDF]

Keith A. Olive, Patrick Petitjean, Elisabeth Vangioni, Joseph Silk
Standard Big Bang Nucleosynthesis at the baryon density determined by the microwave anisotropy spectrum predicts an excess of \li7 compared to observations by a factor of 4-5. In contrast, BBN predictions for D/H are somewhat below (but within ~2 \sigma) of the weighted mean of observationally determined values from quasar absorption systems. Solutions to the \li7 problem which alter the nuclear processes during or subsequent to BBN, often lead to a significant increase in the deuterium abundance consistent with the highest values of D/H seen in absorption systems. Furthermore, the observed D/H abundances show considerable dispersion. Here, we argue that those systems with D/H \simeq 4 \times 10^{-5} may be more representative of the primordial abundance and as a consequence, those systems with lower D/H would necessarily have been subject to local processes of deuterium destruction. This can be accounted for by models of cosmic chemical evolution able to destroy in situ Deuterium due to the fragility of this isotope.
View original: http://arxiv.org/abs/1203.5701

No comments:

Post a Comment