Friday, April 6, 2012

1204.1165 (Ken-ichi Tadaki et al.)

A large scale structure traced by [OII] emitters hosting a distant cluster at z=1.62    [PDF]

Ken-ichi Tadaki, Tadayuki Kodama, Kazuaki Ota, Masao Hayashi, Yusei Koyama, Casey Papovich, Mark Brodwin, Masayuki Tanaka, Masanori Iye
We present a panoramic narrow-band imaging survey of [OII] emitters in and around the ClG J0218.3-0510 cluster at z=1.62 with Suprime-Cam on Subaru telescope. 352 [OII] emitters were identified on the basis of narrow-band excesses and photometric redshifts. We discovered a huge filamentary structure with some clumps traced by [OII] emitters and found that the ClG J0218.3-0510 cluster is embedded in an even larger super-structure than the one reported previously. 31 [OII] emitters were spectroscopically confirmed with the detection of H-alpha and/or [OIII] emission lines by FMOS observations. In the high density regions such as cluster core and clumps, star-forming [OII] emitters show a high overdensity by a factor of more than 10 compared to the field region. Although the star formation activity is very high even in the cluster core, some massive quiescent galaxies also exits at the same time. Furthermore, the properties of the individual [OII] emitters, such as star formation rates, stellar masses and specific star formation rates, do not show a significant dependence on the local density, either. Such lack of environmental dependence is consistent with our earlier result by Hayashi et al. (2011) on a z=1.5 cluster and its surrounding region. The fact that the star-forming activity of galaxies in the cluster core is as high as that in the field at z~1.6 may suggest that the star-forming galaxies are probably just in a transition phase from a starburst mode to a quiescent mode, and are thus showing comparable level of star formation rates to those in lower density environments. We may be witnessing the start of the reversal of the local SFR--density relation due to the "biased" galaxy formation and evolution in high density regions at high this redshift, beyond which massive galaxies would be forming vigorously in a more biased way in proto-cluster cores.
View original: http://arxiv.org/abs/1204.1165

No comments:

Post a Comment