Thursday, April 12, 2012

1204.2265 (E. M. Corsini et al.)

Polar bulges and polar nuclear discs: the case of NGC 4698    [PDF]

E. M. Corsini, J. Méndez-Abreu, N. Pastorello, E. Dalla Bontà, L. Morelli, A. Beifiori, A. Pizzella, F. Bertola
The early-type spiral NGC 4698 is known to host a nuclear disc of gas and stars which is rotating perpendicularly with respect to the galaxy main disc. In addition, the bulge and main disc are characterised by a remarkable geometrical decoupling. Indeed they appear elongated orthogonally to each other. In this work the complex structure of the galaxy is investigated by a detailed photometric decomposition of optical and near-infrared images. The intrinsic shape of the bulge was constrained from its apparent ellipticity, its twist angle with respect to the major axis of the main disc, and the inclination of the main disc. The bulge is actually elongated perpendicular to the main disc and it is equally likely to be triaxial or axisymmetric. The central surface brightness, scalelength, inclination, and position angle of the nuclear disc were derived by assuming it is infinitesimally thin and exponential. Its size, orientation, and location do not depend on the observed passband. These findings support a scenario in which the nuclear disc is the end result of the acquisition of external gas by the pre-existing triaxial bulge on the principal plane perpendicular to its shortest axis and perpendicular to the galaxy main disc. The subsequent star formation either occurred homogeneously all over the extension of the nuclear disc or through an inside-out process that ended more than 5 Gyr ago.
View original: http://arxiv.org/abs/1204.2265

No comments:

Post a Comment