Ruth Grutzbauch, Amanda. E. Bauer, Inger Jørgensen, Jesus Varela
We present the results of an extended narrow-band H{\alpha} study of the massive galaxy cluster XMMU J2235.3-2557 at z = 1.39. This paper represents a follow up study to our previous investigation of star-formation in the cluster centre, extending our analysis out to a projected cluster radius of 1.5 Mpc. Using the Near InfraRed Imager and Spectrograph (NIRI) on Gemini North we obtained deep H narrow-band imaging corresponding to the rest-frame wavelength of H{\alpha} at the cluster's redshift. We identify a total of 163 potential cluster members in both pointings, excluding stars based on their near-IR colours derived from VLT/HAWK-I imaging. Of these 163 objects 14 are spectroscopically confirmed cluster members, and 20% are excess line-emitters. We find no evidence of star formation activity within a radius of 200 kpc of the brightest cluster galaxy in the cluster core. Dust-corrected star formation rates (SFR) of excess emitters outside this cluster quenching radius, RQ \sim 200 kpc, are on average = 2.7 \pm 1.0 M\odot yr-1, but do not show evidence of increasing star-formation rates toward the extreme 1.5 Mpc radius of the cluster. No individual cluster galaxy exceeds an SFR of 6 M\odot yr-1 . Massive galaxies (log M\ast /M\odot > 10.75) all have low specific SFRs (SSFRs, i.e. SFR per unit stellar mass). At fixed stellar mass, galaxies in the cluster centre have lower SSFRs than the rest of the cluster galaxies, which in turn have lower SSFRs than field galaxies at the same redshift by a factor of a few to 10. For the first time we can demonstrate through measurements of individual SFRs that already at very early epochs (at an age of the Universe of \sim4.5 Gyr) the suppression of star-formation is an effect of the cluster environment which persists at fixed galaxy stellar mass.
View original:
http://arxiv.org/abs/1204.4417
No comments:
Post a Comment