Wednesday, May 16, 2012

1005.4691 (Dong Zhang et al.)

Radiation Pressure Driven Galactic Winds from Self-Gravitating Discs    [PDF]

Dong Zhang, Todd A. Thompson
(Abridged) We study large-scale winds driven from uniformly bright self-gravitating discs radiating near the Eddington limit. We show that the ratio of the radiation pressure force to the gravitational force increases with height above the disc surface to a maximum of twice the value of the ratio at the disc surface. Thus, uniformly bright self-gravitating discs radiating at the Eddington limit are fundamentally unstable to driving large-scale winds. These results contrast with the spherically symmetric case, where super-Eddington luminosities are required for wind formation. We apply this theory to galactic winds from rapidly star-forming galaxies that approach the Eddington limit for dust. For hydrodynamically coupled gas and dust, we find that the asymptotic velocity of the wind is v_\infty ~ 1.5 v_rot and that v_\infty SFR^{0.36}, where v_rot is the disc rotation velocity and SFR is the star formation rate, both of which are in agreement with observations. However, these results of the model neglect the gravitational potential of the surrounding dark matter halo and an old passive stellar bulge or extended disc, which act to decrease v_\infty. A more realistic treatment shows that the flow can either be unbound, or bound, forming a "fountain flow" with a typical turning timescale of t_turn ~ 0.1-1 Gyr. We provide quantitative criteria and scaling relations for assessing whether or not a rapidly star-forming galaxy of given properties can drive unbound flows via the mechanism described in this paper. Importantly, we note that because t_turn is longer than the star formation timescale in the rapidly star-forming galaxies and ULIRGs for which our theory is most applicable, if rapidly star-forming galaxies are selected as such, they may be observed to have strong outflows, even though their winds are eventually bound on large scales.
View original: http://arxiv.org/abs/1005.4691

No comments:

Post a Comment