Friday, May 4, 2012

1205.0595 (Christopher W. Churchill et al.)

Quenched Cold Accretion of a Large Scale Metal-Poor Filament due to Virial Shocking in the Halo of a Massive z=0.7 Galaxy    [PDF]

Christopher W. Churchill, Glenn G. Kacprzak, Charles C. Steidel, Lee R. Spitler, Jon Holtzman, Nikole M. Nielsen, Sebastian Trujillo-Gomez
Using HST/COS/STIS and HIRES/Keck high-resolution spectra, we have studied a remarkable HI absorbing complex at z=0.672 toward the quasar Q1317+277. The HI absorption has a velocity spread of 1600 km/s, comprises 21 Voigt profile components, and resides at an impact parameter of D=58 kpc from a bright, high mass [log(M_vir/M_sun) ~ 13.7] elliptical galaxy that is deduced to have a 6 Gyr old, solar metallicity stellar population. Ionization models suggest the majority of the structure is cold gas surrounding a shock heated cloud that is kinematically adjacent to a multi-phase group of clouds with detected CIII, CIV and OVI absorption, suggestive of a conductive interface near the shock. The deduced metallicities are consistent with the moderate in situ enrichment relative to the levels observed in the z ~ 3 Ly-alpha forest. We interpret the HI complex as a metal-poor filamentary structure being shock heated as it accretes into the halo of the galaxy. The data support the scenario of an early formation period (z > 4) in which the galaxy was presumably fed by cold-mode gas accretion that was later quenched via virial shocking by the hot halo such that, by intermediate redshift, the cold filamentary accreting gas is continuing to be disrupted by shock heating. Thus, continued filamentary accretion is being mixed into the hot halo, indicating that the star formation of the galaxy will likely remain quenched. To date, the galaxy and the HI absorption complex provide some of the most compelling observational data supporting the theoretical picture in which accretion is virial shocked in the hot coronal halos of high mass galaxies.
View original: http://arxiv.org/abs/1205.0595

No comments:

Post a Comment