Wednesday, May 23, 2012

1205.4847 (Patrick Valageas et al.)

Redshift-space correlation functions in large galaxy cluster surveys    [PDF]

Patrick Valageas, Nicolas Clerc
Large ongoing and upcoming galaxy cluster surveys in the optical, X-ray and millimetric wavelengths will provide rich samples of galaxy clusters at unprecedented depths. One key observable for constraining cosmological models is the correlation function of these objects, measured through their spectroscopic redshift. We study the redshift-space correlation functions of clusters of galaxies, averaged over finite redshift intervals, and their covariance matrices. Expanding as usual the angular anisotropy of the redshift-space correlation on Legendre polynomials, we consider the redshift-space distortions of the monopole as well as the next two multipoles, $2\ell=2$ and 4. Taking into account the Kaiser effect, we develop an analytical formalism to obtain explicit expressions of all contributions to these mean correlations and covariance matrices. We include both shot-noise and sample-variance effects, as well as Gaussian and non-Gaussian contributions. We obtain a reasonable agreement with numerical simulations for the mean correlations and covariance matrices on large scales ($r> 10 h^{-1}$Mpc). Redshift-space distortions amplify the monopole correlation by about 10-20%, depending on the halo mass, but the signal-to-noise ratio remains of the same order as for the real-space correlation. This distortion will be significant for surveys such as DES, Erosita and Euclid, which should also measure the quadrupole $2\ell=2$. The third multipole, $2\ell=4$, may only be marginally detected by Euclid.
View original: http://arxiv.org/abs/1205.4847

No comments:

Post a Comment