Thursday, May 31, 2012

1205.6583 (Philippe Brax et al.)

Structure Formation in Modified Gravity Scenarios    [PDF]

Philippe Brax, Patrick Valageas
We study the growth of structures in modified gravity models where the Poisson equation and the relationship between the two Newtonian potentials are modified by explicit functions of space and time. This parameterisation applies to the $f(R)$ models and more generally to screened modified gravity models. We investigate the linear and weakly nonlinear regimes using the "standard" perturbative approach and a resummation technique, while we use the spherical dynamics to go beyond low-order results. This allows us to estimate the matter density power spectrum and bispectrum from linear to highly nonlinear scales, the full probability distribution of the density contrast on weakly nonlinear scales, and the halo mass function. We analyse the impact of modifications of gravity on these quantities for a few realistic models. In particular, we find that the standard one-loop perturbative approach is not sufficiently accurate to probe these effects on the power spectrum and it is necessary to use resummation methods even on weakly nonlinear scales which provide the best observational window for modified gravity as relative deviations from General Relativity do not grow significantly on smaller scales where theoretical predictions become increasingly difficult.
View original: http://arxiv.org/abs/1205.6583

No comments:

Post a Comment