Yi-Fu Cai, Damien A. Easson, Robert Brandenberger
We present a nonsingular bouncing cosmology using single scalar field matter with non-trivial potential and non-standard kinetic term. The potential sources a dynamical attractor solution with Ekpyrotic contraction which washes out small amplitude anisotropies. At high energy densities the field evolves into a ghost condensate, leading to a nonsingular bounce. Following the bounce there is a smooth transition to standard expanding radiation and matter dominated phases. Using linear cosmological perturbation theory we track each Fourier mode of the curvature fluctuation throughout the entire cosmic evolution. Using standard matching conditions for nonsingular bouncing cosmologies we verify that the spectral index does not change during the bounce. We show there is a controlled period of exponential growth of the fluctuation amplitude for the perturbations (but not for gravitational waves) around the bounce point which does not invalidate the perturbative treatment. This growth induces a natural suppression mechanism for the tensor to scalar ratio of fluctuations. Moreover, we study the generation of the primordial power spectrum of curvature fluctuations for various types of initial conditions. For the pure vacuum initial condition, on scales which exit the Hubble radius in the phase of Ekpyrotic contraction, the spectrum is deeply blue. For thermal particle initial condition, one possibility for generating a scale-invariant spectrum makes use of a special value of the background equation of state during the contracting Ekpyrotic phase. If the Ekpyrotic phase is preceded by a period of matter-dominated contraction, the primordial power spectrum is nearly scale-invariant on large scales (scales which exit the Hubble radius in the matter-dominated phase) but acquires a large blue tilt on small scales.
View original:
http://arxiv.org/abs/1206.2382
No comments:
Post a Comment