Detlef Elstner, Oliver Gressel
Magnetic field amplification by a fast dynamo is seen in local box simulations of SN-driven ISM turbulence, where the self-consistent emergence of large-scale fields agrees very well with its mean-field description. We accordingly derive scaling laws of the turbulent transport coef- ficients in dependence of the SN rate, density and rotation. These provide the input for global simulations of regular magnetic fields in galaxies within a mean-field MHD framework. Using a Kennicutt-Schmidt relation between the star formation (SF) rate and midplane density, we can reduce the number of free parameters in our global models. We consequently present dynamo models for different rotation curves and radial density distributions.
View original:
http://arxiv.org/abs/1206.5097
No comments:
Post a Comment