Friday, August 17, 2012

1107.0963 (Yara L. Jaffé et al.)

The effect of the environment on the gas kinematics and the structure of distant galaxies    [PDF]

Yara L. Jaffé, Alfonso Aragón-Salamanca, Harald Kuntschner, Steven Bamford, Carlos Hoyos, Gabriella De Lucia, Claire Halliday, Bo Milvang-Jensen, Bianca Poggianti, Gregory Rudnick, Roberto P. Saglia, Patricia Sanchez-Blazquez, Dennis Zaritsky
With the aim of distinguishing between possible physical mechanisms acting on galaxies when they fall into clusters, we study the properties of the gas and the stars in a sample of 422 emission-line galaxies from EDisCS in different environments up to z~1. We identify galaxies with kinematical disturbances (from emission-lines in their 2D spectra) and find that they are more frequent in clusters than in the field. The fraction of kinematically-disturbed galaxies increases with cluster velocity dispersion and decreases with distance from the cluster centre, but remains constant with projected galaxy density. We also studied morphological disturbances in the stellar light from HST/F814W images, finding that the fraction of morphologically disturbed galaxies is similar in all environments. Moreover, there is little correlation between the presence of kinematically-disturbed gas and morphological distortions. We also study the dependence of the Tully-Fisher relation, star formation, and extent of the emission on environment, and conclude that the gas disks in cluster galaxies have been truncated, and therefore their star formation is more concentrated than in low-density environments. If spirals transform into S0s, our findings imply that the physical mechanism transforming cluster galaxies efficiently disturbs the star-forming gas and reduces their specific star formation rate. Moreover, this star-forming gas is either removed more efficiently from the outskirts of the galaxies or is driven towards the centre (or both), helping to build the bulges of S0s. These results, in addition to the finding that the transformation mechanism does not seem to induce strong morphological disturbances on the galaxies, suggest that the physical processes involved are related to the intracluster medium, with galaxy-galaxy interactions playing only a limited role in clusters.
View original: http://arxiv.org/abs/1107.0963

No comments:

Post a Comment