Tuesday, September 11, 2012

1209.1915 (Avery Meiksin et al.)

The Radio Signatures of the First Supernovae    [PDF]

Avery Meiksin, Daniel J. Whalen
Primordial stars are key to primeval structure formation as the first stellar components of primeval galaxies, the sources of cosmic chemical enrichment and likely cosmic reionization, and they possibly gave rise to the supermassive black holes residing at the centres of galaxies today. While the direct detection of individual Pop III stars will likely remain beyond reach for decades to come, we show their supernova remnants may soon be detectable in the radio. We calculate radio synchrotron signatures between 0.5 - 35 GHz from hydrodynamical computations of the supernova remnants of Pop III stars in minihaloes. We find that hypernovae yield the brightest systems, with observed radio fluxes as high as 1 - 10 muJy. Less energetic Type II supernovae yield remnants about a factor of 30 dimmer and pair-instability supernova remnants are dimmer by a factor of more than 10,000. Hypernovae radio remnants should be detectable by existing radio facilities like eVLA and eMERLIN while Type II supernova remnants will require the Square Kilometre Array. The number counts of hypernova remnants at z > 20 with fluxes above 1 muJy are expected to be one per fifty square degree field, increasing to a few per square degree if they form down to z = 10. The detection of a z > 20 Type II supernova remnant brighter than 1 nJy would require a 200 - 300 square degree field, although only a 1 - 2 square degree field for those forming down to z = 10. Hypernova and Type II supernova remnants are easily distinguishable from one another by their light curves, which will enable future surveys to use them to constrain the initial mass function of Pop III stars.
View original: http://arxiv.org/abs/1209.1915

No comments:

Post a Comment