1210.2037 (Hong Li et al.)
Hong Li, Jun-Qing Xia
In this paper, we study the degeneracies among several cosmological parameters in detail and discuss their impacts on the determinations of these parameters from the current and future observations. By combining the latest data sets, including type-Ia supernovae "Union2.1" compilation, WMAP seven-year data and the baryon acoustic oscillations from the SDSS Data Release Seven, we perform a global analysis to determine the cosmological parameters, such as the equation of state of dark energy w, the curvature of the universe \Omega_k, the total neutrino mass \sum{m_\nu}, and the parameters associated with the power spectrum of primordial fluctuations (n_s, \alpha_s and r). We pay particular attention on the degeneracies among these parameters and the influences on their constraints, by with or without including these degeneracies, respectively. We find that $w$ and \Omega_k or \sum{m_\nu} are strongly correlated. Including the degeneracies will significantly weaken the constraints. Furthermore, we study the capabilities of future observations and find these degeneracies can be broken very well. Consequently, the constraints of cosmological parameters can be improved dramatically.
View original:
http://arxiv.org/abs/1210.2037
No comments:
Post a Comment