Ji-hoon Kim, Mark R. Krumholz, John H. Wise, Matthew J. Turk, Nathan J. Goldbaum, Tom Abel
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate. Because we have self-consistently calculated the location of ionized gas, we for the first time are able to make spatially-resolved mock observations of star formation tracers, such as H-alpha emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find that the correlation between star formation rate density (estimated from mock H-alpha emission) and molecular hydrogen density shows large scatter, especially at high resolutions of <~ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution. By examining the evolving environment around star clusters, we demonstrate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales results from a combination of stars drifting from their birthplaces, and molecular clouds being dispersed via ionizing radiation and supernova feedback.
View original:
http://arxiv.org/abs/1210.6988
No comments:
Post a Comment