Andrei Mesinger, Andrea Ferrara, David S. Spiegel
[abridged] With their long mean free paths and efficient heating of the intergalactic medium (IGM), X-rays could have a dramatic impact on the thermal and ionization history of the Universe. We explore this in various signals: (i) Reionization history: including X-rays results in an earlier, more extended reionization. Efficient thermal feedback from X-ray heating could yield an extended, ~10% ionized epoch. (ii) Reionization morphology: a sizable (~10%) contribution of X-rays to reionization results in a more uniform morphology, though the impact is modest when compared at the same global neutral fraction, xH. However, changes in morphology cannot be countered by increasing the bias of the ionizing sources, making them a robust signature. (iii) The kinetic Sunyaev-Zel'dovich (kSZ) effect: at a fixed reionization history, X-rays decrease the kSZ power at l=3000 by ~0.5 microK^2. Our extreme model in which X-rays dominate reionization is the only one that is marginally consistent with upper limits from the South Pole Telescope, assuming no thermal Sunyaev-Zel'dovich (tSZ) - dusty galaxy correlation. Since this extreme model is unlikely, we conclude that there should be a sizable tSZ-dusty galaxy signal. (iv) The cosmic 21cm signal: the impact of X-rays on the 21cm power spectrum during the advanced stages of reionization (xH<0.8) is modest, except in extreme, X-ray dominated models. The largest impact of X-rays is to govern IGM heating. In fact, unless thermal feedback is efficient, the epoch of X-ray heating likely overlaps with the beginning of reionization (xH>0.9). This results in a 21cm power spectrum which is ~ 10-100 times higher than obtained from naive estimates ignoring this overlap. However, if thermal feedback is efficient, the resulting extended epoch between X-ray heating and reionization could provide a clean probe of the matter power spectrum in emission.
View original:
http://arxiv.org/abs/1210.7319
No comments:
Post a Comment