Monday, November 19, 2012

1211.3743 (Adrian Liu et al.)

Global 21cm signal experiments: a designer's guide    [PDF]

Adrian Liu, Jonathan R. Pritchard, Max Tegmark, Abraham Loeb
[Abridged] The spatially averaged global spectrum of the redshifted 21cm line has generated much experimental interest, for it is potentially a direct probe of the Epoch of Reionization and the Dark Ages. Since the cosmological signal here has a purely spectral signature, most proposed experiments have little angular sensitivity. This is worrisome because with only spectra, the global 21cm signal can be difficult to distinguish from foregrounds such as Galactic synchrotron radiation, as both are spectrally smooth and the latter is orders of magnitude brighter. We establish a mathematical framework for global signal data analysis in a way that removes foregrounds optimally, complementing spectra with angular information. We explore various experimental design trade-offs, and find that 1) with spectral-only methods, it is impossible to mitigate errors that arise from uncertainties in foreground modeling; 2) foreground contamination can be significantly reduced for experiments with fine angular resolution; 3) most of the statistical significance in a positive detection during the Dark Ages comes from a characteristic high-redshift trough in the 21cm brightness temperature; and 4) Measurement errors decrease more rapidly with integration time for instruments with fine angular resolution. We show that if observations and algorithms are optimized based on these findings, an instrument with a 5 degree beam can achieve highly significant detections (greater than 5-sigma) of even extended (high Delta-z) reionization scenarios after integrating for 500 hrs. This is in contrast to instruments without angular resolution, which cannot detect gradual reionization. Abrupt ionization histories can be detected at the level of 10-100's of sigma. The expected errors are also low during the Dark Ages, with a 25-sigma detection of the expected cosmological signal after only 100 hrs of integration.
View original: http://arxiv.org/abs/1211.3743

No comments:

Post a Comment