Thursday, November 22, 2012

1211.5064 (E. González-Alfonso et al.)

Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220    [PDF]

E. González-Alfonso, J. Fischer, S. Bruderer, H. S. P. Müller, J. Graciá-Carpio, E. Sturm, D. Lutz, A. Poglitsch, H. Feuchtgruber, S. Veilleux, A. Contursi, A. Sternberg, S. Hailey-Dunsheath, A. Verma, N. Christopher, R. Davies, R. Genzel, L. Tacconi
We report on Herschel/PACS observations of absorption lines of OH+, H2O+ and H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with E_lower of at least 285 and \sim200 K, respectively, are detected in both sources, indicating radiative pumping and location in the high radiation density environment of the nuclear regions. Abundance ratios OH+/H2O+ of 1-2.5 are estimated in the nuclei of both sources. The inferred OH+ column and abundance relative to H nuclei are (0.5-1)x10^{16} cm-2 and \sim2x10^{-8}, respectively. Additionally, in Arp 220, an extended low excitation component around the nuclear region is found to have OH+/H2O+\sim5-10. H3O+ is detected in both sources with N(H3O+)\sim(0.5-2)x10^{16} cm-2, and in Arp 220 the pure inversion, metastable lines indicate a high rotational temperature of ~500 K, indicative of formation pumping and/or hot gas. Simple chemical models favor an ionization sequence dominated by H+ - O+ - OH+ - H2O+ - H3O+, and we also argue that the H+ production is most likely dominated by X-ray/cosmic ray ionization. The full set of observations and models leads us to propose that the molecular ions arise in a relatively low density (\gtrsim10^4 cm-3) interclump medium, in which case the ionization rate per H nucleus (including secondary ionizations) is zeta>10^{-13} s-1, a lower limit that is severalx10^2 times the highest rate estimates for Galactic regions. In Arp 220, our lower limit for zeta is compatible with estimates for the cosmic ray energy density inferred previously from the supernova rate and synchrotron radio emission, and also with the expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray ionization due to an AGN is responsible for the molecular ion production.
View original: http://arxiv.org/abs/1211.5064

No comments:

Post a Comment