Anton Dorodnitsyn, Timothy Kallman
We present calculations of AGN winds at ~parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 - 0.6 L_edd, the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72-75 degrees regardless of the luminosity. At L > 0.1 L_edd the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations \theta > 70 degrees and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities <0.1 L_edd episodes of outflow are followed by extended periods when the wind switches to slow accretion.
View original:
http://arxiv.org/abs/1211.6402
No comments:
Post a Comment