C. Giunti, M. Laveder, Y. F. Li, H. W. Long
We discuss the implications for short-baseline electron neutrino disappearance in the 3+1 mixing scheme of the recent Troitsk bounds on the mixing of a neutrino with mass between 2 and 100 eV. Considering the Troitsk data in combination with the results of short-baseline nu_e and antinu_e disappearance experiments, which include the reactor and Gallium anomalies, we derive a 2 sigma allowed range for the effective neutrino squared-mass difference between 0.85 and 43 eV^2. The upper bound implies that it is likely that oscillations in distance and/or energy can be observed in radioactive source experiments. It is also favorable for the ICARUS@CERN experiment, in which it is likely that oscillations are not washed-out in the near detector. We discuss also the implications for neutrinoless double-beta decay.
View original:
http://arxiv.org/abs/1212.3805
No comments:
Post a Comment