Monday, December 24, 2012

1212.5294 (Curtis J. Saxton)

Galaxy stability within a self-interacting dark matter halo    [PDF]

Curtis J. Saxton
This paper investigates spheroidal galaxies comprising a self-interacting dark matter halo (SIDM) plus de Vaucouleurs stellar distribution. These are coupled only via their shared gravitational field, which is computed consistently from the density profiles. Assuming conservation of mass, momentum and angular momentum, perturbation analyses reveal the galaxy's response to radial disturbance. The modes depend on fundamental dark matter properties, the stellar mass, and the halo's mass and radius. The coupling of stars and dark matter stabilises some haloes that would be unstable as one-fluid models. However the centrally densest haloes are unstable, causing radial flows of SIDM and stars (sometimes in opposite directions). Depending on the dark microphysics, some highly diffuse haloes are also unstable. Unstable galaxies might shed their outskirts or collapse. Observed elliptical galaxies appear to exist in the safe domain. Halo pulsations are possible. The innermost node of SIDM waves may occur within ten half-light radii. Induced stellar ripples may also occur at detectable radii if higher overtones are excited. If any SIDM exists, observational skotoseismology of galaxies could probe DM physics, measure the sizes of specific systems, and perhaps help explain peculiar objects (e.g. some shell galaxies, and the growth of red nuggets).
View original: http://arxiv.org/abs/1212.5294

No comments:

Post a Comment