Monday, January 7, 2013

1301.0631 (Amber Bauermeister et al.)

The EGNoG Survey: Gas Excitation in Normal Galaxies at z~0.3    [PDF]

Amber Bauermeister, Leo Blitz, Alberto D. Bolatto, Martin Bureau, Peter J. Teuben, Tony Wong, Melvyn C. H. Wright
As observations of molecular gas in galaxies are pushed to lower star formation rate galaxies at higher redshifts, it is becoming increasingly important to understand the conditions of the gas in these systems to properly infer their molecular gas content. The rotational transitions of the carbon monoxide (CO) molecule provide an excellent probe of the gas excitation conditions in these galaxies. In this paper we present the results from the gas excitation sample of the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey at the Combined Array for Research in Millimeter-wave Astronomy (CARMA). This subset of the full EGNoG sample consists of four galaxies at z~0.3 with star formation rates of 40-65 M_Sun yr^-1 and stellar masses of ~2x10^11 M_Sun. Using the 3 mm and 1 mm bands at CARMA, we observe both the CO(1-0) and CO(3-2) transitions in these four galaxies in order to probe the excitation of the molecular gas. We report robust detections of both lines in three galaxies (and an upper limit on the fourth), with an average line ratio, r_31 = L'_CO(3-2) / L'_CO(1-0), of 0.46 \pm 0.07 (with systematic errors \lesssim 40%), which implies sub-thermal excitation of the CO(3-2) line. We conclude that the excitation of the gas in these massive, highly star-forming galaxies is consistent with normal star-forming galaxies such as local spirals, not starbursting systems like local ultra-luminous infrared galaxies. Since the EGNoG gas excitation sample galaxies are selected from the main sequence of star-forming galaxies, we suggest that this result is applicable to studies of main sequence galaxies at intermediate and high redshifts, supporting the assumptions made in studies that find molecular gas fractions in star forming galaxies at z~1-2 to be an order of magnitude larger than what is observed locally.
View original: http://arxiv.org/abs/1301.0631

No comments:

Post a Comment