1302.2388 (Kent Yagi)
Kent Yagi
DECIGO Pathfinder (DPF) has an ability to detect gravitational waves from galactic intermediate-mass black hole binaries. If the signal is detected, it would be possible to determine parameters of the binary components. Furthermore, by using future space-borne gravitational wave interferometers, it would be possible to test alternative theories of gravity in the strong field regime. In this review article, we first explain how the detectors like DPF and DECIGO/BBO work and discuss the expected event rates. Then, we review how the observed gravitational waveforms from precessing compact binaries with slightly eccentric orbits can be calculated both in general relativity and in alternative theories of gravity. For the latter, we focus on Brans-Dicke and massive gravity theories. After reviewing these theories, we show the results of the parameter estimation with DPF using the Fisher analysis. We also discuss a possible joint search of DPF and ground-based interferometers. Then, we show the results of testing alternative theories of gravity using future space-borne interferometers. DECIGO/BBO would be able to place 4--5 orders of magnitude stronger constraint on Brans-Dicke theory than the solar system experiment. This is still 1--2 orders of magnitude stronger than the future solar system mission such as ASTROD I. On the other hand, LISA should be able to put 4 orders of magnitude more stringent constraint on the mass of the graviton than the current solar system bound. DPF may be able to place comparable constraint on the massive gravity theories as the solar system bound. We also discuss the prospects of using eLISA and ASTROD-GW in testing alternative theories of gravity. The bounds using eLISA are similar to the LISA ones, but ASTROD-GW performs the best in constraining massive gravity theories among all the gravitational wave detectors considered in this article.
View original:
http://arxiv.org/abs/1302.2388
No comments:
Post a Comment