Thursday, February 14, 2013

1302.2925 (A. G. Kim et al.)

Standardizing Type Ia Supernova Absolute Magnitudes Using Gaussian Process Data Regression    [PDF]

A. G. Kim, R. C. Thomas, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard, C. Buton, A. Canto, F. Cellier-Holzem, M. Childress, N. Chotard, Y. Copin, H. K. Fakhouri, E. Gangler, J. Guy, M. Kerschhaggl, M. Kowalski, J. Nordin, P. Nugent, K. Paech, R. Pain, E. Pécontal, R. Pereira, S. Perlmutter, D. Rabinowitz, M. Rigault, K. Runge, C. Saunders, R. Scalzo, G. Smadja, C. Tao, B. A. Weaver, C. Wu
We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SED) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak $B$ brightness are calibrated to 0.13 mag in the $g$-band and to as low as 0.09 mag in the $z=0.25$ blueshifted $i$-band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.
View original: http://arxiv.org/abs/1302.2925

No comments:

Post a Comment