Thursday, February 21, 2013

1302.4746 (Vianney Lebouteiller et al.)

Chemical enrichment and physical conditions in I Zw 18    [PDF]

Vianney Lebouteiller, Sara Heap, Ivan Hubeny, Daniel Kunth
Abridged. Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The HI region provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. Our primary objective is to study the enrichment of the HI region and the interplay between star-formation history and metallicity evolution. We observed the most metal-poor star-forming galaxy in the Local Universe, I Zw 18, with Hubble/COS. The abundances in the neutral gas are derived from far-UV absorption-lines (HI, CII, CII*, NI, OI, ...) and are compared to the abundances in the HII region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the HI region through physical diagnostics drawn from the fine-structure level of C+. We find that HI region abundances are lower by a factor of ~2 as compared to the HII region. There is no differential depletion on dust between the HI and HII region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 solar (vs. 1/31 in the HII region). From the study of abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the HI envelope may contain pockets of pristine gas with a metallicity essentially null. Finally, we derive the physical conditions in the HI region by investigating the CII* absorption line. The cooling rate derived from CII* is consistent with collisions with H atoms in the diffuse neutral gas. We calculate the star-formation rate from the CII* cooling rate assuming that photoelectric effect on dust is the dominant gas heating mechanism. Our determination is in good agreement with the values in the literature if we assume a low dust-to-gas ratio (~2000 times lower than the Milky Way value).
View original: http://arxiv.org/abs/1302.4746

No comments:

Post a Comment