Han-Seek Kim, J. Stuart B. Wyithe, Jaehong Park, C. G. Lacey
The observed power spectrum of redshifted 21cm fluctuations is known to be sensitive to the astrophysical properties of the galaxies that drove reionization. Thus, detailed measurements of the 21cm power spectrum and its evolution could lead to measurements of the properties of early galaxies that are otherwise inaccessible. In this paper, we study the effect of mass and redshift dependent escape fractions of ionizing radiation on the ability of forthcoming experiments to constrain galaxy formation via the redshifted 21cm power spectrum. We use a model for reionization which combines the hierarchical galaxy formation model GALFORM implemented within the Millennium-II dark matter simulation, with a semi-numerical scheme to describe the resulting ionization structure. Using this model we show that the structure and distribution of ionised regions at fixed neutral fraction, and hence the slope and amplitude of the 21 cm power spectrum, is dependent on the variation of ionising photon escape fraction with galaxy mass and redshift. However, we find that the influence of the unknown escape fraction and its evolution is smaller than the dominant astrophysical effect provided by SNe feedback strength in high redshift galaxies. The unknown escape fraction of ionizing radiation from galaxies is therefore unlikely to prevent measurement of the properties of high redshift star formation using observations of the 21cm power spectrum.
View original:
http://arxiv.org/abs/1303.3051
No comments:
Post a Comment