Friday, April 5, 2013

1304.1369 (Jun-Hwan Choi et al.)

Supermassive Black Hole Formation at High Redshifts via Direct Collapse: Physical Processes in the Early Stage    [PDF]

Jun-Hwan Choi, Isaac Shlosman, Mitchell C. Begelman
We use numerical simulations to explore whether direct collapse can lead to the formation of supermassive black hole (SMBH) seeds at high redshifts. We follow the evolution of gas within slowly tumbling DM halos of 2 x 10^8 Mo and 1 kpc. We adopt cosmologically motivated density profiles and j-distributions. Our goal is to understand how the collapsing flow overcomes the centrifugal barrier and whether it is subject to fragmentation. We find that the collapse leads either to a central runaway or to off-center fragmentation. A disk-like configuration is formed inside the centrifugal barrier. For more cuspy DM distribution, the gas collapses more and experiences a bar-like perturbation and a central runaway. We have followed this inflow down to ~10^{-4} pc. The flow remains isothermal and the specific angular momentum is efficiently transferred by gravitational torques in a cascade of nested bars. This cascade supports a self-similar, disk-like collapse. In the collapsing phase, virial supersonic turbulence develops and fragmentation is damped. For larger initial DM cores the timescales become longer. In models with more organized initial rotation, a torus forms and appears to be supported by turbulent motions. The evolution depends on the competition between two timescales, corresponding to the onset of the central runaway and off-center fragmentation. For less organized rotation, the torus is greatly weakened, the central accretion timescale is shortened, and off-center fragmentation is suppressed --- triggering the central runaway even in previously `stable' models. The resulting SMBH masses lie in the range 2 x 10^4 Mo - 2 x 10^6 Mo, much higher than for Population III remnants. Corollaries of this model include a possible correlation between SMBH and DM halo masses, and similarity between the SMBH and halo mass functions, at time of formation.
View original: http://arxiv.org/abs/1304.1369

No comments:

Post a Comment