Tianjun Li, James A. Maxin, Dimitri V. Nanopoulos, Joel W. Walker
We take stock of the No-Scale F-SU(5) model's experimental status and prospects in the light of results from LHC, Planck, and XENON100. Given that no conclusive evidence for light Supersymmetry (SUSY) has emerged from the 7, 8 TeV collider searches, the present work is focused on exploring and clarifying the precise nature of the high-mass cutoff enforced on this model at the point where the stau and neutralino mass degeneracy becomes so tight that cold dark matter relic density observations cannot be satisfied. This hard upper boundary on the model's mass scale constitutes a top-down theoretical mandate for a comparatively light (and testable) SUSY spectrum which does not excessively stress natural resolution of the gauge hierarchy problem. The overlap between the resulting model boundaries and the expected sensitivities of the future 14 TeV LHC and XENON 1-Ton direct detection SUSY / dark matter experiments is described.
View original:
http://arxiv.org/abs/1305.1846
No comments:
Post a Comment