Luc Dessart, D. John Hillier, Roni Waldman, Eli Livne
We explore the properties of Type II-Plateau (II-P) supernovae (SNe) together with their red-supergiant (RSG) star progenitors. Using MESA STAR, we modulate the parameters (e.g., mixing length, overshoot, rotation, metallicity) that control the evolution of a 15Msun main-sequence star to produce a variety of physical pre-SN models and SN II-P ejecta. We extend previous modeling of SN II-P radiation to include photospheric and nebular phases, as well as multi-band light curves and spectra. Our treatment does not assume local thermodynamic equilibrium, is time dependent, treats explicitly the effects of line blanketing, and incorporates non-thermal processes. We find that the color properties of SNe II-P require large model atoms for FeI and FeII, much larger than adopted in Dessart & Hillier (2011). The color properties also imply RSG progenitors of limited extent (~500Rsun) --- larger progenitor stars produce a SN II-P radiation that remains too blue for too long. This finding calls for a reduction of RSG radii, perhaps through a strengthening of convective energy transport in RSG envelopes. Increased overshoot and rotation reduce the ratio of ejecta to helium-core mass, similarly to an increase in main-sequence mass, and thus complicate the inference ofprogenitor masses. In contrast to the great sensitivity on progenitor radius, SN II-P color evolution appears insensitive to variations in explosion energy. Finally, we document the numerous SN II-P signatures that vary with progenitor metallicity, revealing their potential for metallicity determinations in the nearby and distant Universe.
View original:
http://arxiv.org/abs/1305.3386
No comments:
Post a Comment