Wednesday, May 22, 2013

1305.4804 (Florian Pranger et al.)

The galaxy population of the complex cluster system Abell 3921    [PDF]

Florian Pranger, Asmus Böhm, Chiara Ferrari, Antonaldo Diaferio, Richard Hunstead, Sophie Maurogordato, Christophe Benoist, Jarle Brinchmann, Sabine Schindler
We present a spectrophotometric analysis of the galaxy pop. in the area of the merging cluster Abell 3921 at redshift 0.093. We investigate the impact of the complex cluster environment on galaxy properties such as morphology or star formation rate. We combine multi-object spectroscopy from the 2dF spectrograph with optical imaging taken with the ESO WFI. We carry out a redshift analysis and determine cluster velocity dispersions using biweight statistics. Applying a Dressler-Shectman (DS-)test we seek evidence for cluster substructure. Cluster and field galaxies are investigated with respect to [OII] and H{\alpha} equivalent width, SFR and morphological descriptors such as concentration index and Gini coefficient. We study these cluster galaxy properties as a function of clustercentric distance and investigate the spatial distribution of various galaxy types. Applying the DS-test we find a 3rd component (A3921-C) in addition to the two main subclusters (A3921-A and A3921-B) already known. The re-determined mass ratio between the main components A and B is approx. 2:1. Similar to prev. studies of galaxy clusters, we find that a large fraction of the disk galaxies close to the cluster core show no detectable star formation. These are likely systems that are quenched due to ram pressure stripping. We also find quenched spirals at rather large distances of 3 to 4 Mpc from the cluster core. A3921-C might be a group of galaxies falling onto the main cluster components. We speculate that the unexpected population of quenched spirals at large clustercentric radii in A3921-A and A3921-B might be an effect of the ongoing cluster merger: shocks in the ICM might give raise to enhanced ram pressure stripping and at least in part be the cause for the quenching of star formation. These quenched spirals might be an interm. stage in the morphological transformation of field spirals into cluster S0s.
View original: http://arxiv.org/abs/1305.4804

No comments:

Post a Comment