Friday, June 14, 2013

1306.2971 (Tony Y. Li et al.)

Reionization Histories of Milky Way Mass Halos    [PDF]

Tony Y. Li, Marcelo A. Alvarez, Risa H. Wechsler, Tom Abel
We investigate the connection between the epoch of reionization and the present day universe, by examining the extended mass reionization histories of dark matter halos identified at z=0. We combine an N-body dark matter simulation of a 600 Mpc volume with a three-dimensional, seminumerical reionization model. This provides reionization redshifts for each particle, which can then be connected with the properties of their halos at the present time. We find that the vast majority of present-day halos with masses larger than ~ few x 10^11 Msun reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogenous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ~ 115 Myr for 10^(12 \pm 0.25) Msun halos, decreasing slightly to ~ 95 Myr for 10^(15 \pm 0.25) Msun halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ~ 20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large HII regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.
View original: http://arxiv.org/abs/1306.2971

No comments:

Post a Comment