Pasquale Di Bari, Stephen F. King, Christoph Luhn, Alexander Merle, Angnis Schmidt-May
We propose a model based on radiative symmetry breaking that combines
inflation with Dark Energy and is consistent with the WMAP 7-year regions. The
radiative inflationary potential leads to the prediction of a spectral index
0.955 \lesssim n_S \lesssim 0.967 and a tensor to scalar ratio 0.142 \lesssim r
\lesssim 0.186, both consistent with current data but testable by the Planck
experiment. The radiative symmetry breaking close to the Planck scale gives
rise to a pseudo Nambu-Goldstone boson with a gravitationally suppressed mass
which can naturally play the role of a quintessence field responsible for Dark
Energy. Finally, we present a possible extra dimensional scenario in which our
model could be realised.
View original:
http://arxiv.org/abs/1010.5729
No comments:
Post a Comment