Lucimara Martins, Gustavo Lanfranchi, Denise R. Goncalves, Laura Magrini, Ana M. Teodorescu, Cintia Quireza
NGC 185 is a dwarf spheroidal satellite of the Andromeda galaxy. From
mid-1990s onwards it was revealed that dwarf spheroidals often display a varied
and in some cases complex star formation history. In an optical survey of
bright nearby galaxies, NGC 185 was classified as a Seyfert galaxy based on its
emission line ratios. However, although the emission lines in this object
formally place it in the category of Seyferts, it is probable that this galaxy
does not contain a genuine active nucleus. NGC 185 was not detected in radio
surveys either in 6 or 20 cm, or X-ray observations, which means that the
Seyfert-like line ratios may be produced by stellar processes. In this work, we
try to identify the possible ionization mechanisms for this galaxy. We
discussed the possibility of the line emissions being produced by planetary
nebulae (PNe), using deep spectroscopy observations obtained with GMOS-N, at
Gemini. Although the fluxes of the PNe are high enough to explain the
integrated spectrum, the line ratios are very far from the values for the
Seyfert classification. We then proposed that a mixture of supernova remnants
and PNe could be the source of the ionization, and we show that a composition
of these two objects do mimic Seyfert-like line ratios. We used chemical
evolution models to predict the supernova rates and to support the idea that
these supernova remnants should be present in the galaxy.
View original:
http://arxiv.org/abs/1110.5891
No comments:
Post a Comment