Friday, October 28, 2011

1101.2186 (Philip D. Mannheim)

Making the Case for Conformal Gravity    [PDF]

Philip D. Mannheim
We review some recent developments in the conformal gravity theory that has been advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a $PT$ symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori classical curvature, with all curvature having to result from quantization. In the conformal theory gravity requires no independent quantization of its own, with it being quantized solely by virtue of its being coupled to a quantized matter source. Moreover, because it is this very coupling that fixes the strength of the gravitational field commutators, the gravity sector zero-point energy density and pressure fluctuations are then able to identically cancel the zero-point fluctuations associated with the matter sector. In addition, we show that when the conformal symmetry is spontaneously broken, the zero-point structure automatically readjusts so as to identically cancel the cosmological constant term that dynamical mass generation induces. We show that the macroscopic classical theory that results from the quantum conformal theory incorporates global physics effects that provide for a detailed accounting of a comprehensive set of 138 galactic rotation curves with no adjustable parameters other than the galactic mass to light ratios, and with the need for no dark matter whatsoever. With these global effects eliminating the need for dark matter, we see that invoking dark matter in galaxies could potentially be nothing more than an attempt to describe global physics effects in purely local galactic terms. Finally, we review some recent work by 't Hooft in which a connection between conformal gravity and Einstein gravity has been found.
View original: http://arxiv.org/abs/1101.2186

No comments:

Post a Comment