Makoto Kishimoto, Sebastian F. Hoenig, Robert Antonucci, Florentin Millour, Konrad R. W. Tristram, Gerd Weigelt
We present mid-IR interferometric observations of 6 type 1 AGNs at multiple
baseline lengths of 27--130m, reaching high angular resolutions up to
lambda/B~0.02 arcseconds. For two of the targets, we have simultaneous near-IR
interferometric measurements as well. The multiple baseline data directly probe
the radial distribution of the material on sub-pc scales. Within our sample,
which is small but spans over ~2.5 orders of magnitudes in the UV/optical
luminosity L of the central engine, the radial distribution clearly and
systematically changes with luminosity. First, we show that the brightness
distribution at a given mid-IR wavelength seems to be rather well described by
a power law, which makes a simple Gaussian or ring size estimation quite
inadequate. Here we instead use a half-light radius R_1/2 as a representative
size. We then find that the higher luminosity objects become more compact in
normalized half-light radii R_1/2 /R_in in the mid-IR, where R_in is the dust
sublimation radius empirically given by the L^1/2 fit of the near-IR
reverberation radii. This means that, contrary to previous studies, the
physical mid-IR emission size (e.g. in pc) is not proportional to L^1/2, but
increases with L much more slowly, or in fact, nearly constant at 13 micron.
Combining the size information with the total flux specta, we infer that the
radial surface density distribution of the heated dust grains changes from a
steep ~r^-1 structure in high luminosity objects to a shallower ~r^0 structure
in those of lower luminosity. The inward dust temperature distribution does not
seem to smoothly reach the sublimation temperature -- on the innermost scale of
~R_in, a relatively low temperature core seems to co-exist with a slightly
distinct brightness concentration emitting roughly at the sublimation
temperature.
View original:
http://arxiv.org/abs/1110.4290
No comments:
Post a Comment