Feng Luo, Keith A. Olive, Jean-Philippe Uzan
We consider the effect of the coupled variations of fundamental constants on
the nucleon magnetic moment. The nucleon g-factor enters into the
interpretation of the measurements of variations in the fine-structure
constant, alpha, in both the laboratory (through atomic clock measurements) and
in astrophysical systems (e.g. through measurements of the 21 cm transitions).
A null result can be translated into a limit on the variation of a set of
fundamental constants, that is usually reduced to alpha. However, in specific
models, particularly unification models, changes in alpha are always
accompanied by corresponding changes in other fundamental quantities such as
the QCD scale, Lambda_QCD. This work tracks the changes in the nucleon
g-factors induced from changes in Lambda_QCD and the light quark masses. In
principle, these coupled variations can improve the bounds on the variation of
alpha by an order of magnitude from existing atomic clock and astrophysical
measurements. Unfortunately, the calculation of the dependence of g-factors on
fundamental parameters is notoriously model-dependent.
View original:
http://arxiv.org/abs/1107.4154
No comments:
Post a Comment